1. Evaluate the surface integral
Posted by: Angel Castro
$$\iint_S z~dS,$$
where $S$ is part of the paraboloid $z=x^2+y^2$ under the plane $z=9$.
Solution:
Using the tools from class we can write this integral as follows.
$$\iint_S z~dS=\iint_D(x^2+y^2)\sqrt{1+4x^2+4y^2}dA$$
Where $D$ is the disk $x^2+y^2\leq9$. After changing to polar coordinates we have
$$\int_0^{2\pi}\int_0^3r^3\sqrt{1+4r^2}drd\theta=2\pi\int_0^3r^3\sqrt{1+4r^2}dr,$$
which may be evaluated using trigonometric substitution. Let $r=\frac{1}{2}\tan\phi$, so $dr=\frac{1}{2}\sec^2\phi$ and $\sqrt{1+4r^2}=\sqrt{\sec^2\phi}=\sec\phi$. Thus the integral is transformed into
$$\int\frac{1}{16}\tan^3\phi\sec^3\phi d\phi=\frac{1}{16}\int \tan\phi(\sec^2\phi-1)\sec^3\phi d\phi$$
$$=\frac{1}{16}\int (\sec^5\phi-\sec^3\phi)\tan\phi\sec\phi d\phi$$
Now use $u$-substitution with $u=\sec\phi$ and thus $du=\tan\phi\sec\phi d\phi$ and so the integral becomes
$$\frac{1}{16}\int(u^5-u^3)du=\frac{1}{96}u^6-\frac{1}{64}u^4$$
reversing the substitutions we have
$$=\frac{1}{96}\sec^6\phi-\frac{1}{64}\sec^4\phi$$.
Then using $\sec\phi=\sqrt{1+\tan^2\phi}$ this becomes
$$=\frac{1}{96}(1+4r^2)^3-\frac{1}{64}(1+4r^2)^2.$$
Now evaluate at $r=3$ and $r=0$ and we are all done.
Solution:
Using the tools from class we can write this integral as follows.
$$\iint_S z~dS=\iint_D(x^2+y^2)\sqrt{1+4x^2+4y^2}dA$$
Where $D$ is the disk $x^2+y^2\leq9$. After changing to polar coordinates we have
$$\int_0^{2\pi}\int_0^3r^3\sqrt{1+4r^2}drd\theta=2\pi\int_0^3r^3\sqrt{1+4r^2}dr,$$
which may be evaluated using trigonometric substitution. Let $r=\frac{1}{2}\tan\phi$, so $dr=\frac{1}{2}\sec^2\phi$ and $\sqrt{1+4r^2}=\sqrt{\sec^2\phi}=\sec\phi$. Thus the integral is transformed into
$$\int\frac{1}{16}\tan^3\phi\sec^3\phi d\phi=\frac{1}{16}\int \tan\phi(\sec^2\phi-1)\sec^3\phi d\phi$$
$$=\frac{1}{16}\int (\sec^5\phi-\sec^3\phi)\tan\phi\sec\phi d\phi$$
Now use $u$-substitution with $u=\sec\phi$ and thus $du=\tan\phi\sec\phi d\phi$ and so the integral becomes
$$\frac{1}{16}\int(u^5-u^3)du=\frac{1}{96}u^6-\frac{1}{64}u^4$$
reversing the substitutions we have
$$=\frac{1}{96}\sec^6\phi-\frac{1}{64}\sec^4\phi$$.
Then using $\sec\phi=\sqrt{1+\tan^2\phi}$ this becomes
$$=\frac{1}{96}(1+4r^2)^3-\frac{1}{64}(1+4r^2)^2.$$
Now evaluate at $r=3$ and $r=0$ and we are all done.
2. Evaluate the surface integral
$$\iint_S x~dS,$$
where $S$ is the bottom half of the sphere $x^2+y^2+z^2=4$.
Posted by: Angel Castro
Solution

3. Evaluate the surface integral
$$\iint_S (x^2+y^2+z^2)dS,$$
where $S$ is the cylinder $x^2+z^2=1$ between $y=-1$ and $y=1$, together with the top and bottom disks.
Solution: by Dima Tarasevich

4. Suppose $\mathbf{F}(x,y,z)=x\mathbf{i}-z\mathbf{j}+y\mathbf{k}$ and $S$ is the part of the sphere $x^2+y^2+z^2=16$ in the first octant. Find
$$\iint_S \mathbf{F}\cdot d\mathbf{S}.$$
5. Suppose $\mathbf{F}(x,y,z)=xy\mathbf{i}+yz\mathbf{k}$ and $S$ is parameterized by $\mathbf{r}(u,v)=(u+v)\mathbf{i}+uv\mathbf{j}+(u-v)\mathbf{k}$ for $(u,v)\in [0,1]\times[0,1]$. Find
$$\iint_S \mathbf{F}\cdot d\mathbf{S}.$$
SOLUTION:
$\mathbf{r}u X \mathbf{r}v = (-v-u)\mathbf{i}+ 2\mathbf{j} + (u-v)\mathbf{k}$
$\mathbf{F}\cdot \mathbf{r}u X \mathbf{r}v = (u+v)(-v-u) +2uv + (u-v)(u-v)$
$$\int_0^1\int_0^1(u+v)(-v-u)\mathbf{i} +2uv\mathbf{j} + (u-v)(u-v)\mathbf{k}$$
$$\int_0^1\int_0^1 2uv dudv = 1/2$$
Charlie




